Nonlinear Discriminant Analysis Using Kernel Functions and the Generalized Singular Value Decomposition
نویسندگان
چکیده
Linear Discriminant Analysis (LDA) has been widely used for linear dimension reduction. However, LDA has some limitations that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. In order to overcome the problems caused by the singularity of the scatter matrices, a generalization of LDA based on the generalized singular value decomposition (GSVD) has been developed recently. In this paper, we propose a nonlinear discriminant analysis based on the kernel method and the generalized singular value decomposition. The GSVD is applied to solve the generalized eigenvalue problem which is formulated in the feature space defined by a nonlinear mapping through kernel functions. Our GSVD-based kernel discriminant analysis is theoretically compared with other kernel-based nonlinear discriminant analysis algorithms. The experimental results show that our method is an effective nonlinear dimension reduction method.
منابع مشابه
Kernel Discriminant Analysis based on Generalized Singular Value Decomposition
In Linear Discriminant Analysis (LDA), a dimension reducing linear transformation is found in order to better distinguish clusters from each other in the reduced dimensional space. However, LDA has a limitation that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. We propose a nonlinear discriminant analysis based on kerne...
متن کاملWeighted Generalized Kernel Discriminant Analysis Using Fuzzy Memberships
Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. However, LDA has limitations in that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. In order to overcome these problems, in this paper, we present several generalizations of kernel fuzzy discriminant analysis (KFDA) which include KFD...
متن کاملRelationships Between Support Vector Classifiers and Generalized Linear Discriminant Analysis on Support Vectors
The linear discriminant analysis based on the generalized singular value decomposition (LDA/GSVD) has recently been introduced to circumvents the nonsingularity restriction that occur in the classical LDA so that a dimension reducing transformation can be effectively obtained for undersampled problems. In this paper, relationships between support vector machines (SVMs) and the generalized linea...
متن کاملWeighted Generalized LDA for Undersampled Problems
Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. It aims to maximize between-class scatter and minimize within-class scatter, thus maximize the class discriminant. However, for undersampled problems where the data dimensionality is larger than the sample size, all scatter matrices are singular and the classical LDA encounters computational difficulty. Rec...
متن کاملAn Iterative Algorithm for KLDA Classifier
The Linear discriminant analysis (LDA) can be generalized into a nonlinear form ─ kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 27 شماره
صفحات -
تاریخ انتشار 2005